Secure Identity Propagation Using WS-Trust, SAML2, and WS-Security
12 Apr 2011
IBM Impact
Robert C. Broeckelmann Jr., Enterprise Middleware Architect
Ryan Triplett, Middleware Security Architect
Agenda

• Requirements
• Actors
• Related Security concepts
• Specifications
• Technology
 • Websphere 7.0
 • DataPower XI-50
 • TFIM 6.2 Security Token Service
• Flow of identity through the system
Disclaimers

- Here representing ourselves, not our employer.
- What we present here is one of numerous possible ways to use IBM SOA technology.
- Your situation and requirements will probably differ.
- As always, test things in a non-production environment prior to using anything in production.
- We are not responsible for spontaneous combustion of the known universe or any other undesirable outcomes associated with using what is discussed here.
Requirements
Business Requirements--Hypothetical

- Maintain a high quality customer experience
- Increase business and IT agility and adaptability
- Constantly improve speed to market of new products
- Decrease the growth rate in customer servicing costs
- Provide a stable, scalable platform for payment processing
- Consistent security interface to customers
Technical Requirements--Hypothetical

• Presentation tier of a customer facing application must be able to access business logic located across different systems within the enterprise.
• Apply industry standards to solve problems whenever possible.
• Will construct wrapper services around legacy systems that are not already SOAP services.
• Standardize on SOAP over HTTP(S)
• All services must satisfy WS-I Basic Interoperability.
• All services are advertised on the ESB; Service Consumer service calls pass through the ESB.
Security Requirements--Hypothetical

- Standards-based, secure end-user identity propagation mechanism
- Mechanism should include a digital signature to ensure message integrity.
- Mutually Authenticated SSL at all hops to ensure message confidentiality (and integrity).
- Token validation and authorization decision made at ESB tier.
- Obtain identity at Service Provider tier(s) via token revalidation.
Actors
Actors

• Service Providers
• Service Consumers
• ESB
• Security Token Service
Service Providers

• Service Provider tiers host WS-I Basic Interoperability-compliant SOAP Web Services.
 – WS-I BP (Basic Profile) 1.1 (see [6])
 – SSBP (Simple SOAP Binding Profile) 1.0 (see [7])

• In our scenario, this is an application running in WebSphere Application Server 7.0.0.7 (or above).

• Application contains POJOs that implement JAX-WS Web Service(s).
 – See [1] for more information about JAX-WS
Service Consumers

• Service Consumer tiers host SOAP clients.

• Again, WS-I Basic Interoperability-compliant (see last slide for description).

• JAX-WS SOAP client.
 – Requires a client stub to be generated by RAD tooling.

• In our scenario, once again, this is a Web Application running in WebSphere Application Server 7.0.0.7(or above).
Security Token Service

• WS-Trust-compliant service(s) that supports issuing, validation, and renewal of security tokens.

• A Security Token contains identification information about a Principal(user of the system).

• We’ll talk about Principals shortly.

• More information about these ideas can be found in [2], [3], and [4].
Enterprise Service Bus (ESB)

- SOA pattern
- One possible implementation of a Service Oriented Architecture (SOA).
- A middleware platform. There are many.
- A central access point for reusable, logical components (services) whose use spans multiple spheres of concern.
- For more information, see [5]
Related Security Concepts
Authentication

• Process of a remote entity (user or system) proving its identity to the system.
• Can be achieved in a variety of ways.
• In this story, we will use
 – JEE Security with Form-Based Authentication(WAS 7.0) for end-user authentication.
• Token Validation – confirm a security token is valid and trusted
 – Validating digital signature
 – Checking expiration timestamp
 – Checking user exists in a User Repository
• See [9] for more information.
Principal

• An entity that can be authenticated.
• Could be a system.
 – Batch job.
 – An application.
 – A computer.
• Could be an end user.
 – A Web application user in our case.
• See [8] for more information.
User Repository

• A collection of user information known to the system.
• May include: usernames, passwords, groups, group membership, and other attributes.
• Examples
 – LDAP
 – Flat file
 – Database
• Master copy of all user and group information within the system.
• Trust Domain – collection of systems that share a common User Repository.
• In our case,
 • LDAP Repository (Tivoli Directory Server, TDS)
 • All systems are in the same Trust Domain
• See [12] for more information.
LDAP

• A specification.

• Our user repository.

• Contains
 – Inetorgperson objects describing users.
 – Group objects describing groups
 – Users can be members of multiple groups.

• Captures group membership relationships.
Security Token

- A self-contained collection of information that systems can pass around that describes a Principal.
- May contain (we’ll assume ours does):
 - User ID.
 - List of Groups.
 - Other attributes (from LDAP).
- May utilize:
 - Encryption
 - Digital signature
 - Timestamp
Authorization

• Process by which the system makes a decision of whether an authenticated principal has permission to access a resource.

• A resource could be:
 – Web Application path (Servlet, JSP, etc)
 – EJB (or EJB method)
 – Web Service

• Will often be based upon:
 – Static information – e.g., LDAP Group membership or a user attribute
 – Dynamic information – e.g., authentication method

• See [10] for more information.
Identity Propagation

• Process by which one system transmits identity of a requestor to another system.

• Identity Propagation usually achieved through some form of token.
 – Token contains username, group membership, other LDAP attributes.
 – Digital signature
 – Confidentiality

• We are using SAML2 tokens in this discussion.
Security Token Service (STS)

- Defined by WS-Trust spec.
- Composed of Web Service(s) that perform operations on Security Tokens.
- Client trusts STS.
 - MASSL
 - Shared key
 - WS-Security
 - Other mechanisms
- Requires a client to provide credentials to prove trust & an identity to be represented in the output token.
 - We’ll call these the input credentials.
- Provides assertions about the input credentials in the form of a Security Token.
 - We’ll call this the output credential.
- In our example,
 - Input credential is an LTPA2 Token
 - Output credential is a SAML2 token
- Using STS for all token transformations.
 - Central management of digital signature keys/certificates for security tokens.
 - Central management of
 - token generation.
 - token transformations.
Identity Propagation--Visualized

- **End User** Using a web application running in a Web Browser
 - WS-Trust v1.3 ISSUE request
 - LTPA2 in.
 - SAML2 out

- **WAS 7** Presentation Tier acting as Service Consumer

- **DataPower -- XI50**
 - Acting as ESB
 - Extract identity token
 - Validate token
 - Authorization

- **TFIM STS**
 - Processes token request.
 - Validates LTPA2 Token.
 - Issues digitally signed SAML2 token.

- **TDS LDAP**
 - Pull group membership & attributes from LDAP to populate SAML2 token.

- **WAS 7 Service Provider Host**
 - Validate SAML2 Token
 - Build JAAS Subject

1. End User
2. STS
3. TFIM STS
4. LDAP
5. LTPA2
6. WAS 7
7. WAS 7
8. WAS 7
9. WAS 7
10. End User
Security Within the ESB

- ESB:
 - Extracts Security Token
 - Validates Security Token
 - Checks Authorization

- We will revisit this shortly.
Policy Driven Security

- **Policy Administration Point (PAP)** – component used for the creation, maintenance, change, and deletion of security policy regarding system resources
- **Policy Decision Point (PDP)** – component responsible for providing a response to an authorization request to a protected resource
- **Policy Enforcement Point (PEP)** – component which manages access to system resources
- See [18]
Mutually Authenticated SSL

• Secure Sockets Layer (SSL) provides transport-layer security between each tier of the system.
• Provides message integrity and confidentiality
• Mutually Authenticated SSL refers to the requirement of the client presenting a valid x509v3 certificate.
• In our case, all communication is over MASSL connections at each network hop.
• Could also use WS-Security Integrity & Confidentiality.
• See [13], [14], [15].
Relevant Specifications
Relevant Specifications

- WS-Security
- WS-Trust
- SAML2
WS-Security

• Provides the basic mechanisms for securing SOAP messages.

• Standard provides for the following to SOAP messages.
 – Integrity (XML Digital Signature with SOAP)
 – Confidentiality (XML Encryption with SOAP)
 – Transmitting identity tokens (SAML2, others)

• See [16].
WS-Trust

- Builds on WS-Security base.
- Provides additional mechanisms for working with security tokens.
- Defines communication with a Security Token Service.
- WS-Trust clients can make the following types of calls:
 - ISSUE
 - VALIDATE
 - RENEW
 - CANCEL
- See [17].
SAML v2

- OASIS standard for exchanging authentication and authorization information.
- Information is propagated as tokens that contain “assertions” about an entity or person.
- Snippet of XML
- WS-Security provides for passing a SAML2 token in a SOAP Header.
- SAML2 spec defines use of XML Digital Signature and XML Encryption with SAML tokens.
- See [19].
Technology
Technology

• Websphere Application Server 7
• TFIM 6.2
 – Security Token Service
• DataPower XI50 (acting as an ESB)
Websphere Application Server (WAS) 7.0

• Description
 – JEE v1.5 compliant Application Server
 – Service Provider Platform
 – Service Consumer Platform

• Using JAX-WS SOAP Runtime.

• Out-of-box functionality (relevant to this discussion) provides
 – WS-Security Support (propagates SAML2 token in SOAP Header)
 – WS-Trust (STS client) support.
 – Local validation of SAML2 tokens (on Service Provider)
 – Dynamic Endpoints can be used to setup client x509v3 cert/key to be used with MASSL connection.

• See [22] for more information.
Tivoli Federated Identity Manager 6.2

- WS-Trust v1.3-compliant Security Token Service (STS)
- Only interested in Security Token Service, but offers solutions for a variety of Federated Single Sign On scenarios.
- Note, token validations will be done locally whenever possible.
- See [21] for more information.
DataPower XI50

- SOA Appliance
- Acting as an ESB (together with WMQ 7.0).
- Support for:
 - SOAP
 - REST
 - XML (XML Acceleration)
 - WS-* support.
 - Security (authentication, authorization, etc)
 - Many others

- Add on features support:
 - ODBC
 - TAM
 - TIBCO
 - HSM module

- See [20] for more information.
Flow of credentials
Through System
End User Authenticaates To System (Service Consumer)

- End user could authenticate to Service Consumer system numerous ways
 - WebSEAL scenario (identity assertion to WAS via LTPA2 token, TAI++, or other methods)
 - JEE Security(Form-Based)—our scenario does this.
 - Other

- Websphere container (Service Consumer) knows the end user by the user session’s Security Context.
 - JAAS Subject describes the user’s identity
Service Consumer obtains SAML2 token

- WAS7 SOAP/WS-Security runtime interacts with the TFIM STS via a WS-Trust ISSUE request.
 - Input credential: LTPA2 BST
 - Output credential: SAML2 token
- SAML2 token is digitally signed by the STS (XML Digital Signature).
- Mutually authenticated SSL for WS-Trust calls.
- Custom module in TFIM STS queries LDAP for user information.
- Token cached locally in Service Consumer WAS container with patch IBM recently created.
Service Consumer Issues SOAP Call

- Service Consumer uses JAX-WS SOAP Runtime and client stub to issue SOAP call.
- SAML2 token obtained from STS.
- Transport-level security (Mutually Authenticated SSL) for SOAP call.
- HTTP POST passes request SOAP message to ESB.
- Wait for response.
SOAP Request Arrives at DataPower

- HTTPS Front Side Handler advertises service.
- Request is routed to a configured WS-Proxy.
Internal ESB Security Processing

- WS-Proxy has a Request Rule defining policy.
- Service’s WS-Proxy Security configuration
 - AAA Policy
 - SAML2 token validation
 - TAM Authorization
 - Exception Handler
 - Audit Logger
 - Other configuration, not relevant to security
- If Service Consumer isn’t capable of passing a SAML2 token, DataPower could make a WS-Trust call to TFIM to obtain one or generate token locally.
ESB routes request to Service Provider

- WS-Proxy configuration routes SOAP request to Service Provider
 - Could be based upon
 - URL in WSDL.
 - Determined dynamically, based upon message content

- Service Provider Endpoint defined in WSDL stored in Websphere Service Registry & Repository.

- DataPower routes request to this Service Provider Endpoint.
Request arrives at Service Provider

- WAS WS-Security runtime:
 - Extracts token from request message.
 - Validates SAML2 token locally
 - XML Digital Signature validation.
 - Check timestamp.
- Security Context created
 - JAAS Subject
 - Only valid for this one service invocation.
 - Original SAML2 token stored in JAAS Subject.
Service Execution

- POJO method exposed as a JAX-WS Web Service operation intercepts SOAP call.
- Service logic is executed.

```java
@WebService
public class Echo {
    @WebMethod
    public String echo(String str) {
        ... 
    }
}
```
Response

- SOAP Runtime returns response to ESB.
- ESB intercepts response and passes it to Service Consumer.
- Service Consumer intercepts response.
- For synchronous, request-respond Message Exchange Patterns, identity tokens will generally only be passed in the Consumer->Provider direction.
Third-Party Products & Identity Propagation

• WS-Security, WS-Trust, and SAML2 can be used as the bases for secure identity propagation across compliant platforms.

• For example:
 – JBoss
 – .NET
 – Layer 7
Thank You…

• Questions???
Reference